1．気体分子がある速度を持つ確率。これを使うと，気体の衝突確率など，気体の運動に関わ る量が理論的に求められる。
2.

$$
\bar{c}=\sqrt{\frac{8 k_{\mathrm{B}} T}{\pi m}}=\sqrt{\frac{8 \cdot\left(1.381 \times 10^{-23} \mathrm{~m}^{2} \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~K}^{-1}\right) \cdot(300 \mathrm{~K})}{3.142 \cdot\left(32.0 \times 10^{-3} \mathrm{~kg} \mathrm{~mol}^{-1}\right) /\left(6.02 \times 10^{23} \mathrm{~mol}^{-1}\right)}}=446 \mathrm{~m} / \mathrm{s}
$$

3.

$\mathrm{Z}_{\mathrm{AA}} \times V=\pi d^{2} \sqrt{\frac{4 k_{\mathrm{B}} T}{\pi m}}\left(\frac{N}{V}\right)^{2} \times V$
$=3.142 \cdot\left(0.36 \times 10^{-9} \mathrm{~m}\right)^{2} \cdot \sqrt{\frac{4 \cdot\left(1.381 \times 10^{-23} \mathrm{~m}^{2} \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~K}^{-1}\right) \cdot(300 \mathrm{~K})}{3.142 \cdot\left(32.0 \times 10^{-3} \mathrm{~kg} \mathrm{~mol}^{-1}\right) /\left(6.02 \times 10^{23} \mathrm{~mol}^{-1}\right)}} \cdot \frac{\left(0.1 \times 6.02 \times 10^{23}\right)^{2}}{2.5 \times 10^{-3} \mathrm{~m}^{3}}$
$=1.9 \times 10^{32} \mathrm{~s}^{-1}$
注： Z_{AA} は「単位体積•単位時間あたりの衝突頻度」。ここでは，体積を特定した気体につい て問うているので，体積をかけて「気体全体の（1秒あたりの）衝突頻度」に換算する。

4．mean free path $=\frac{\bar{c}}{\sqrt{2} \pi d^{2} c(N / V)}=\frac{1}{\sqrt{2} \pi d^{2}}\left(\frac{V}{N}\right)$
数密度＝N N が一定であれば，この値は分子の直径のみに依存する。
5.
（1）

$$
\begin{aligned}
& \frac{1}{4} \sqrt{\frac{8 k_{\mathrm{B}} T}{\pi m}}\left(\frac{p}{k_{\mathrm{B}} T}\right) \cdot\left(4 \times 10^{-4} \mathrm{~m}^{2}\right)=p \sqrt{\frac{1}{2 \pi m k_{\mathrm{B}} T}} \cdot\left(4 \times 10^{-4} \mathrm{~m}^{2}\right) \\
& =\frac{\left(1.013 \times 10^{5} \mathrm{~m} \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~m}^{-2}\right) \cdot\left(4 \times 10^{-4} \mathrm{~m}^{2}\right)}{\sqrt{2 \cdot 3.142 \cdot\left(39.9 \times 10^{-3} \mathrm{~kg} \mathrm{~mol}^{-1}\right) /\left(6.02 \times 10^{23} \mathrm{~mol}^{-1}\right) \cdot\left(1.381 \times 10^{-23} \mathrm{~m}^{2} \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~K}^{-1}\right) \cdot(273 \mathrm{~K})}} \\
& =1.02 \times 10^{24}\left(\mathrm{~s}^{-1}\right)
\end{aligned}
$$

（2）
表面の面積 $(0.32 \mathrm{~nm})^{2}=\left(0.32 \times 10^{-9} \mathrm{~m}\right)^{2}=1.024 \times 10^{-19} \mathrm{~m}^{2}$ あたり 1 個の原子が存在するから， $\left(4 \times 10^{-4} \mathrm{~m}^{2}\right) /\left(1.024 \times 10^{-19} \mathrm{~m}^{2}\right)=3.91 \times 10^{15}$
（3）

$$
1 \mathrm{~atm} \times\left(3.91 \times 10^{15}\right) /\left(1.02 \times 10^{24}\right)=3.83 \times 10^{-9} \mathrm{~atm}=3.88 \times 10^{-4} \mathrm{~N} \mathrm{~m}^{-2}
$$

